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1 INTRODUCTION 
Over the past few years, there has been a substantial increase in drones being used for military 
and police operations. Many of these drones do not have any system in place for collision 
detection and avoidance besides notifying the operator so that they can change course.  This 
system works well when doing missions in a large open environment, but is insufficient for 
small, highly maneuverable drones in enclosed or cluttered spaces. 

Operator reaction times are too slow to successfully avoid collision, especially when considering 
the latency introduced by a wireless control harness.  Additionally, many of the commercial 
systems available do not focus on being affordable, but rather on including every feature 
possible. This results in a drone that is equipped for many tasks, but costs $50,000 or more.  This 
pricing makes drone adoption difficult for casual users, and leaves little room for repair or 
replacement of drones involved in collisions.  

There has been some improvement in this area over the past few years.  In fact, some UAVs are 
now available to the general consumer for around $400.  These drones also do not have any kind 
of collision avoidance, and limited control systems, and are therefore as easy to crash as their 
high-end counterparts.  Some improvement must be made in this area for both the consumer 
market and the commercial market; ideally, both users would be able to use their drones safely 
and effectively knowing that systems are in place to avoid crashes. 

Our goal as Team Lunch is to solve these problems, and to prove that every autonomous drone 
can be equipped with our solution.  Our project will benefit our customer, Lockheed Martin 
Canada CDL Systems Ltd., by demonstrating how such a system can be implemented cheaply 
with off-the-shelf technology available to the general consumer.  Our project will also benefit the 
rest of the UAV market, because we will prove that such features are possible at a low cost.  We 
hope that with time, they will become standard on every UAV.  Such an adoption will greatly 
increase the safety of drones, not only by reducing the risk of a costly crash, but also by reducing 
the risk of injury to persons and damage to property.  

We have decided to focus on taking a commercially available, off the shelf consumer UAV, and 
equipping it with an autonomous collision detection and avoidance system.  This system will 
allow us to prove that automated accident avoidance is possible during operation of a drone, with 
minimal operator skill required.  Our drone, once outfitted with these systems, will allow 
unskilled operators to purchase and fly the UAV in close-quarter environments with minimal 
risk, training, and possibility of damage to the UAV and surrounding property.  Hopefully, the 
outcome of our project will convince drone manufacturers to adopt the use of a collision 
avoidance and detection system in production model aircraft. We also hope that with the 
increased availability and lower cost of these autonomous drones, many more organizations will 
decide to use drones in their everyday operations. 
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2 LOW LEVEL DESIGN 

2.1 OVERVIEW OF SYSTEM COMPONENTS 
Our system consists of four major components: the end user, the Android application they use to 
control the quadcopter, the embedded collision avoidance autopilot software, and the Quadcopter 
hardware (including our enhanced sensor platform).  The following diagram that shows the 
interaction between these components: 

 
Figure 1: System Interaction Diagram 

The system we have proposed is built from off-the-shelf components, in order to allow us to 
avoid spending time and energy recreating existing technology, such as the quadcopter and 
ultrasonic sensors.  We are building our collision avoidance software on top of a Parrot 
AR.Drone 2.0 quadcopter, which already ships with control software that maintains all the 
onboard systems, and allows for easy and stable flight.  The quadcopter employs a built-in, 
lightweight Linux-based operating system, which it uses to run the autopilot software as well as a 
Wi-Fi wireless networking interface.  Off the shelf, the autopilot software is responsible for 
responding to operator commands (such as “fly left, 20% speed”) by adjusting the rotors’ 
velocity.  The onboard autopilot also maintains altitude using an onboard altimeter, and can 
“hold position” using computer vision analysis of the image from a downward-facing camera. 

To support our collision avoidance system, we have purchased several range sensors from a 
Calgary-area vendor called Phidgets.  These sensors are ultrasonic, and provide us with distance 
readings between 154 mm and 6.5 m. These sensors work out of the box, and require no user 
setup - we simply connect the “+5V”, “Ground” and “Data” lines to a Phidgets USB sensor 
controller, and read the reported distances from a simple C API. 

Lastly, we will be using an Android Nexus 7 tablet with an open source tablet application that we 
will create to fit our needs. This tablet was selected as it is a stable, basic Android tablet, and is 
representative of the wide variety of Android tablets that could potentially host our control 
software in the future. 
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2.2 MODIFIED OPEN-SOURCE ANDROID PILOTING APPLICATION 
The Android application for this project will be built off of an existing open source app called 
“FreeFlight2”, created by Parrot.  This application is a fully functional app that can be used to fly 
an unmodified AR Drone.  The application will be modified and only the essential features 
needed for flight will be kept.  Along with these modifications we plan to add several features 
that are specific to our modified AR Drone.  The existing application is quite complicated in the 
way that it has been built but this has been for a good reason, since the developers at Parrot did 
not want to write separate code for every deployment target.  The Android application 
specifically uses the AR Drone’s flight API, which has been coded in C in order to be cross 
platform compatible.  In order to compile this code for Android, the NDK (Native Development 
Kit) provided by Google must be used.  The GUI orientated part of the application however is 
written in Java and is built off of the Android SDK.  As it would not be wise to mess with the 
essential flight code of the drone which has likely been tested by parrot to be free of major bugs 
we will implement the core of our new features in java. 

We intend to add three features to the software: 

1. Upon connecting to drone, the user will be able to remotely launch the quadcopter’s 
onboard autonomous collision avoidance software. 

2. Addition of sound to alert the operator when a collision has been avoided, or the onboard 
autonomous collision avoidance software is proactively limiting the quadcopter’s speed 

3. A video overlay with invisible bars around the edge of the screen.  These invisible bars 
would change color to non-intrusively warn the operator when the autonomous collision 
avoidance software is proactively limiting the quadcopter’s speed, or the quadcopter is in 
danger of a collision. 

2.3 ONBOARD COLLISION AVOIDANCE AUTOPILOT SOFTWARE 
The onboard collision avoidance software is responsible for preventing the operator from 
crashing the vehicle.  This will be accomplished by intercepting operator commands, modifying 
them based on the ultrasonic sensor data, and then retransmitting them to the OEM autopilot 
software that ships with the AR.Drone. 

The autopilot software is written in C++ and cross-compiled to ARM from a standardized 
Debian virtual machine image.  This allows us to work on the code concurrently, using modern 
development tools, and write scripts for tasks such as compiling and deploying the software 
image. 

2.3.1 Command Interception and Modification 
The Parrot AR.Drone is operated by sending a series of flight commands over Wi-Fi via UDP 
packets.  Our autopilot software intercepts these via a Linux iptables firewall rule, which 
redirects these commands to a port monitored by our software.  Once the commands are 
received, we decode them, modify them, and then re-transmit them to the onboard autopilot 
software.  The iptables rule is installed only on the wireless network interface, not the local 
loopback interface, preventing the commands from getting stuck in an infinite loop. 
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Figure 2: Command Path Diagram 

The AR.Drone communication protocol is relatively straightforward. For flight commands, a 
UDP packet is sent with the following format: 

	
   AT*PCMD=%d,%d,%d,%d,%d,%d<CR> 

The six values are as follows: 

1. The packet sequence number 
2. The current flight mode (hover, fly, fly with magnetic control, etc) 
3. Drone left/right tilt 
4. Drone front/back tilt 
5. Drone vertical speed 
6. Drone angular speed (spin) 

Our collision avoidance software will intercept these commands, and modify flags 3 and 4 
(left/right tilt and front/back tilt) based on the collision avoidance algorithm described in the next 
section.  Once new values are computed, the command packet is recreated, and forwarded to the 
OEM autopilot.  As far as the OEM autopilot is concerned, the operator original operator just 
happened to avoid the wall.  This highly decoupled design allows us to ensure we don’t need to 
modify the existing autopilot’s flight, stability, ground tracking, or safety algorithms. 

2.3.2 Collision Avoidance Algorithm 
The collision avoidance algorithm used is a simple dynamic limiting function, implemented 
against smoothed sensor data.  As the quadcopter approaches an obstacle, its maximum forward 
speed is limited based on its distance to the object.  Once the quadcopter gets within a 
predetermined “danger” radius, the maximum forward speed is reduced below 0; i.e. the 
maximum forward speed is actually backwards.  This causes the quadcopter to back away from 
the obstacle, preventing a collision. 
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Figure 3: Quadcopter Speed versus Obstacle Distance for One Obstacle 

The maximum reverse velocity is limited in the same way, based on data from the rear sensor. In 
the case where the maximum velocities overlap, such as if the quadcopter is constrained between 
two walls, the average of the two maximums is used.  This allows the vehicle to automatically 
center itself in a crowded environment, without needing operator input. 

 
Figure 4: Quadcopter Speed versus Obstacle Distance for Multiple Obstacles 

Once the front/back tilt is calculated, the same algorithm is used to calculate the left/right tilt. 
This allows the vehicle to avoid collisions along both of its lateral degrees of freedom.  The 
OEM autopilot software already maintains altitude above the ground, and ceilings or other 
obstacles above the vehicle have been determined to be outside the scope of this project. 
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2.3.3 Code Structure and Design 
The code is structured using a dependency injection (DI) technique, allowing us to separate the 
concerns of various modules, without coupling them more than is necessary.  Any unrelated 
modules communicate through C++ interfaces (classes consisting of only pure virtual methods), 
allowing us to limit their coupling, and work on different modules independently.  For example, 
the sensor data is only accessible through the I_SensorReader interface, which consists of a 
single “reading()” accessor function. 

A complete diagram of the classes is as follows: 

 
Figure 5: Class Diagram 

Dataflow through the software mirrors the class design.  Commands are read in from the UDP 
socket, modified based on the smoothed sensor data, and then written back out to another UDP 
socket, as in the following diagram: 

 
Figure 6: Data Flow Diagram 
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2.4 HARDWARE DESIGN 
We will use the original AR Drone hull and attach ultrasonic sensors to its outer edges.  The 
sensors will communicate to the supplied Phidget Interface kit and communicate distance 
information to the tablet.  The tablet will interpret this information and test for potential 
collisions. 

 
Figure 7: Sensor Connection Layout 

Our initial hardware configuration had an ultrasonic sensor on each of the 4 edges of the frame.  
After initial testing we found that this was insufficient, giving us a blind spot at corners of about 
10 degrees, as shown in the following diagram. 

 
Figure 8: Former Layout with Ultrasonic Blindspots 



9 
 

 

To resolve this issue, we are adding additional ultrasonic sensors to cover the blind spot, 
allowing us to satisfactorily detect threats from all directions.  Note that since the sensors have a 
conical zone, we will also detect obstacles from above and below.  The new sensor arrangement 
is shown in the following diagram. 

 
Figure 9: Updated Layout With Full Ultrasonic Coverage 
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3 PRODUCT DESIGN SPECIFICATIONS 

3.1 EXPECTED PERFORMANCES 
The product should allow the UAV in use to avoid obstacles in flight.  An obstacle is defined as 
any solid object within the UAV’s trajectory.  Upon detecting an obstacle, the system will notify 
the user and either stop the UAV or move away from the obstacle, as required.  As of this 
iteration, the UAV will not be able to reliably avoid wires or meshes, such as chain link fences 
and nets.  The onboard equipment should be able to handle North American outdoor 
temperatures. 

3.2 SPECIFICATIONS RELATED TO PERFORMANCE 
The Parrot AR.Drone itself is capable of a speed of 5 m/s, or 18 km/h.  It has a weight of 0.9 
pounds with the outer hull attached.  Flying time on a single battery is about 12 minutes.  Based 
on this speed, we expect the UAV to be able to avoid obstacles which are stationary, or which 
approach at a speed up to 5 m/s.   

According to manufacturer specifications of the sensors, we are capable of sensing obstacles as 
close as 152.4 mm, although items closer than this will also register as 152.4 mm by the sensor.  
The sensor can detect obstacles up to 6.5 meters away.  Distance measurement resolution is 25.4 
mm.  

Feeling skeptical of the manufacturer’s claims for the ultrasonic sensors, we collected our own 
distance detection data.  In particular, we were interested in finding the angle of the field of view 
of one of the sensors.  Our test procedure is outlined in the Hardware Test Plan section.  We 
found that the ultrasound sensors have a field of view of 40 degrees.  This is just short of the 45 
degrees we hoped for.  Additional ultrasonic sensors will be added on to the system to cover the 
blind spots.  We also found that the size of the obstacle had an effect on its maximum distance 
for detection.  Narrow objects, such as poles and large wires were detectable at 120 cm.  Small 
obstacles of approximately 1 square foot were detectable at 300 cm.  Larger barriers of 
approximately 2 square meters were detectable at 350 cm.  Finally, walls were detectable at 600 
cm.  Since measured results from the sensors were not as effective as the manufacturer claims, 
the measured values will be our expected specifications. 

Measured system response latency was approximately 0.01 seconds.  This latency can be 
considered as negligible, since if an object approached fast enough to collide with the UAV 
before it has time to respond, the UAV could not possibly have flown out of the way in time. 

Finally, the sensor and equipment manufacturer specifications allow the product to be used in 
temperatures ranging from -40 to 65 degrees Celsius.  This is an acceptable outdoor range for 
most places on Earth. 
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4 TESTING AND REFINEMENT 

4.1 ANDROID APPLICATION FINAL TESTING PLAN 
 The Android application will be tested with the following methods: 

1. Drone will be started along with the Android application, using feature addition 1 we will 
load the collision avoidance system onto the drone.  The drone will then be flown 
towards an object using the modified Android application. 

2. The drone while flying will be flown at its minimum speed towards an object.  As the 
drone enters the specified collision warning zone the red bars laid out around the screen 
will fade in red as the drone gets closer to the object. 

3. The drone while flying will be flown at its minimum speed towards an object.  As the 
drone enters the collision zones tones will be listened for at increasing volume as we head 
towards the object. 

4.1.1 Android Application Testing Results 
See Section 4.4 for Integration test results, which cover the Android application testing plan. 

4.2 ONBOARD AUTOPILOT SOFTWARE FINAL TESTING PLAN 
The autopilot software was built using an Automated Acceptance Test Driven Development 
(AATDD) approach originally developed by our sponsor, Lockheed Martin Canada CDL 
Systems.  This approach is similar to TDD, but on a higher level.  Before any functionality is 
implemented, an automated acceptance test is written that tests this functionality, by only 
stubbing out external parts of the software.  For our testing strategy, the following software 
components are replaced with mock objects for testing: 

• CommandProxy, which wraps the UDP send/receive sockets used to communicate with 
the control tablet and the OEM autopilot 

• SensorReader, which wraps the libphidget library used to communicate with our sensors 
• TestBenchLogger, which wraps the console used to communicate debugging data to the 

operator 

A helper class called “FakeArDrone” constructs these three mock objects, as well as the entire 
collision avoidance core system.  This allows unit tests to easily create and destroy the C++ 
objects, without having to create them individually. 

Once the FakeArDrone has been created, a human-readable acceptance test can be created.  For 
example, a very basic acceptance test that ensures the AR.Drone utilizes data from the front-left 
sensor might read as follows: 

TEST(UsesClosestForwardSensorReadingForCollisionAvoidance)	
  
{	
  
	
  	
  	
  //	
  Arrange	
  
	
  	
  	
  FakeArDrone::setup();	
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  placeWallAtFrontLeftOfVehicle(DANGER_DISTANCE);	
  
	
  
	
  	
  	
  //	
  Act	
  
	
  	
  	
  sendCommand(flyForward());	
  
	
  
	
  	
  	
  //	
  Assert	
  
	
  	
  	
  CHECK_EQUAL(proxiedCommand(),	
  stop());	
  
}	
  
 

This test consists of three parts: 

• Arrange, in which we ask the singleton FakeArDrone class to setup a new instance, and 
then place a wall in range of the front-left sensor. 

• Act, in which we order the drone to fly forward 
• Assert, in which we ensure that the proxied command, which is the one sent to the OEM 

autopilot, is actually a “stop” command due to the obstacle. 

These tests are written using a number of “helper” functions designed to make them easily 
readable.  This allows our customer to review our test coverage, and understand what we are 
testing, without having to understand our entire system architecture.   These functions are 
generally short and concise; for example, placeWallAtFrontOfVehicle(double distance) could 
read as follows: 

void	
  MessageHelpers::placeWallAtFrontLeftOfVehicle(float	
  distance)	
  
{	
  

arDrone().sensors().readings_[ForwardLeftSensor]	
  =	
  distance;	
  
}	
  
 

When the collision avoidance core asks the mocked sensor reader for the ForwardLeftSensor’s 
reading, it will return the value in the ‘readings_’ map, which in this case has been set to 
‘distance’. 

For the core autopilot system, we have the following automated acceptance tests: 

TestSaysHelloToTestBench.cxx	
  

TEST(SaysHelloToTestBench)	
  

TestReportsSensorData.cxx	
  

TEST(InitializesSensorsOnStartup)	
  

TEST(ReportsSensorReadingsToTestBench)	
  

TEST(ReportsSensorReadingsToAndroidTablet)	
  

TestProxiesCommands.cxx	
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TEST(InitializesCommandProxyOnStartup)	
  

TEST(ProxiesAllUnknownCommandsWithoutModification)	
  

TEST(ProxiesMultipleCommandsPerApplicationCycle)	
  

TestInterpretsCommandsCorrectly.cxx	
  

TEST(CurrentPlatformUsesExpectedFloatingPointMemoryRepresentation)	
  

TEST(InterpretsArDroneSdksIntFormattedFloatingPointNumbersCorrectly)	
  

TestAvoidsWalls.cxx	
  

TEST(DoesntCrashIntoWallInFrontOfCopter)	
  

TEST(DoesntCrashIntoAnyWalls)	
  

TEST(CanStillFlyAwayFromWalls)	
  

TEST(FlysAwayAutonomouslyWhenWithinDangerDistanceOfWall)	
  

TEST(DangerRangeWorksForRearSensorsToo)	
  

TEST(AutoCentersWhenFlyingBetweenNarrowWalls)	
  

TEST(NotifiesTabletWhenCollisionsHaveBeenAvoided)	
  

TestSupportsDiagonalSensors.cxx	
  

TEST(ReportsForwardAngledSensorDataToTestBench)	
  

TEST(UsesClosestForwardSensorReadingForCollisionAvoidance)	
  

TEST(UsesClosestLeftSensorReadingForCollisionAvoidance)	
  

TEST(UsesClosestRightSensorReadingForCollisionAvoidance)	
  

TestExitsHoverModeWhenInDanger.cxx	
  

TEST(LeavesHoverModeWhenWithinDangerRadiusOfAWall)	
  

TEST(DoesntAffectHoverModeWhenEntirelySafe)	
  

TEST(DoesntAffectHoverModeWhenWithinSafetyZone)	
  

TEST(IgnoresUnintentionalCommandsWhileOverridingHoverMode)	
  

TestSmoothsSensorData.cxx	
  

TEST(InstantaniousSensorReadingsDontScrewThingsUp)	
  

As we develop and enhance our autopilot software, we may add tests to this list as necessary.  
We believe this set of tests covers our functional requirements, but it is easy to add more as 
needed. 
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4.2.1 Automated Acceptance Tests Results 
The results obtained from running all of the automated tests once is shown below: 

cd	
  ../../3rdparty/unittest-­‐cpp/UnitTest++	
  &&	
  make	
  all	
  
make[1]:	
  Entering	
  directory	
  `/home/ardrone/workspace/project/3rdparty/unittest-­‐
cpp/UnitTest++'	
  
make[1]:	
  Nothing	
  to	
  be	
  done	
  for	
  `all'.	
  
make[1]:	
  Leaving	
  directory	
  `/home/ardrone/workspace/project/3rdparty/unittest-­‐
cpp/UnitTest++'	
  
g++	
  -­‐o	
  .obj/x86/allTests.o	
  AutopilotCore.cxx	
  CollisionAvoidanceCore.cxx	
  
FlightCommandCodec.cxx	
  GroundStationReportingCore.cxx	
  SensorDataSmoother.cxx	
  
StringHelpers.cxx	
  TestBenchLogger.cxx	
  WallDetector.cxx	
  test/TestAvoidsWalls.cxx	
  
test/TestExitsHoverModeWhenInDanger.cxx	
  test/TestInterpretsCommandsCorrectly.cxx	
  
test/testMain.cxx	
  test/TestProxiesCommands.cxx	
  test/TestReportsSensorData.cxx	
  
test/TestReportsToGroundStation.cxx	
  test/TestSaysHelloToTestBench.cxx	
  
test/TestSmoothsSensorData.cxx	
  test/TestSupportsDiagonalSensors.cxx	
  
test/common/FakeArDrone.cxx	
  test/common/FakeCommandProxy.cxx	
  
test/common/FakeGroundStation.cxx	
  test/common/FakeSensorReader.cxx	
  
test/common/FakeTestBenchLogger.cxx	
  test/common/MessageHelpers.cxx	
  
test/common/RandomHelpers.cxx	
  "../../3rdparty/unittest-­‐
cpp/UnitTest++/libUnitTest++.a"	
  -­‐Wall	
  -­‐Werror	
  -­‐I.	
  -­‐
I../../3rdparty/libphidget/libphidget-­‐2.1.8.20120514/	
  -­‐I"../../3rdparty/unittest-­‐
cpp/UnitTest++/src"	
  -­‐I"./test/"	
  -­‐I"./test/common/"	
  
"../../tools/runTest.sh"	
  .obj/x86/allTests.o	
  .obj/allTests.passed	
  
	
  
PASS	
  :	
  	
  	
  	
  InitializesSensorsOnStartup	
  
PASS	
  :	
  	
  	
  	
  ReportsSensorReadingsToTestBench	
  
PASS	
  :	
  	
  	
  	
  LeavesHoverModeWhenWithinDangerRadiusOfAWall	
  
PASS	
  :	
  	
  	
  	
  DoesntAffectHoverModeWhenEntirelySafe	
  
PASS	
  :	
  	
  	
  	
  DoesntAffectHoverModeWhenWithinSafetyZone	
  
PASS	
  :	
  	
  	
  	
  IgnoresUnintentionalCommandsWhileOverridingHoverMode	
  
PASS	
  :	
  	
  	
  	
  CurrentPlatformUsesExpectedFloatingPointRepresentation	
  
PASS	
  :	
  	
  	
  	
  InterpretsCrazyIntFloatingPointNumbersCorrectly	
  
PASS	
  :	
  	
  	
  	
  ReportsForwardAngledSensorData	
  
PASS	
  :	
  	
  	
  	
  UsesClosestForwardSensorReadingForCollisionAvoidance	
  
PASS	
  :	
  	
  	
  	
  DoesntCrashIntoWallInFrontOfCopter	
  
PASS	
  :	
  	
  	
  	
  DoesntCrashIntoAnyWalls	
  
PASS	
  :	
  	
  	
  	
  CanStillFlyAwayFromWalls	
  
PASS	
  :	
  	
  	
  	
  FlysAwayAutonomouslyWhenWithinDangerDistanceOfWall	
  
PASS	
  :	
  	
  	
  	
  DangerRangeWorksForRearSensorsToo	
  
PASS	
  :	
  	
  	
  	
  AutoCentersWhenFlyingBetweenNarrowWalls	
  
PASS	
  :	
  	
  	
  	
  InitializesCommandProxyOnStartup	
  
PASS	
  :	
  	
  	
  	
  ProxiesAllUnknownCommandsWithoutModification	
  
PASS	
  :	
  	
  	
  	
  ProxiesMultipleCommandsPerCycle	
  
PASS	
  :	
  	
  	
  	
  InitializesCommunicationWithGroundStation	
  
PASS	
  :	
  	
  	
  	
  ReportsSensorReadingsToGroundStation	
  
PASS	
  :	
  	
  	
  	
  FarAwayWallsAreReportedAsZeroDangerLevel	
  
PASS	
  :	
  	
  	
  	
  WithinSafeDistanceWallsAreReportedRelativeToRemainingDistance	
  
PASS	
  :	
  	
  	
  	
  WallsAtVehicleNoseAreReportedAsMaximumDangerLevel	
  
PASS	
  :	
  	
  	
  	
  InstantaniousSensorReadingsDontScrewThingsUp	
  
PASS	
  :	
  	
  	
  	
  SaysHelloToTestBench	
  
	
  
Success:	
  26	
  tests	
  passed.	
  
Test	
  time:	
  0.36	
  seconds.	
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4.3 INTEGRATION TESTING 
Integration testing was the most important testing we had to do for our final project.  The testing 
of the Android application with the onboard autopilot software caught a critical bug in our 
system, which we were able to fix shortly after integrating both applications.  Integration testing 
was done as follows: 

Table 1: Integration Test Results 

Test 
# 

Test Description Setup Execution Expected Result Final 
Result 

1 Fly quadcopter with 
modified application 
without having collision 
avoidance software 
running. 

Turn on AR 
Drone 
Connect Tablet 
to Drone 

 

Fly drone around 
room while 
manually 
avoiding 
obstacles 

Drone should fly as 
normal with no 
avoidance behaviour. 

PASS 

2 Fly quadcopter with 
Android application.  
Avoidance application 
will be running but will 
be started without 
Android application 

Turn on AR 
Drone 
Connect Tablet 
to Drone 
Connect laptop 
to drone to start 
avoidance 
application 

 

Hover drone in 
the air.  Have a 
person walk 
towards sensors 
in various 
directions 

Avoidance bars 
should not appear on 
the tablet screen until 
a person approaches 
a sensor.  Drone 
should fly away from 
the approaching 
person. 

PASS 

3 Fly quadcopter with 
Android application.  
Avoidance application 
will be started with the 
Android application. 

Turn on AR 
Drone 
Connect Tablet 
to Drone 
Start avoidance 
software with 
the Android 
application 

 

Hover drone in 
the air.  Have a 
person walk 
towards the 
sensors in 
various 
directions 

Avoidance bars 
should not appear on 
the tablet screen until 
a person approaches 
a sensor.  Drone 
should fly away from 
the approaching 
person. 

PASS 

4 Fly quadcopter with 
Android application.  
Avoidance application 
will be started with the 
Android application. 

Turn on AR 
Drone 
Connect Tablet 
to Drone 
Start avoidance 
software with 
the Android 
application 

 

Actively fly the 
drone with the 
tablet.  Try to fly 
the drone into 
walls and other 
large obstacles. 

Avoidance bars 
should fade in as the 
drone approaches 
and obstacle.  Drone 
should fly towards an 
obstacle until the 
object gets within its 
danger zone.  The 
drone should then 
start to ignore user 
commands and will 
not get any closer to 
the obstacle. 

PASS 
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Overall, integration testing went quite well. Tests 2-4 were repeated several times to ensure that 
the results from the test were deterministic.  The first few times we attempted Test #3, we had 
issues with the Android application actually starting the avoidance software correctly.  We were 
able to sort this issue out quickly and were happy that our integration test suite caught this issue. 

5 SUGGESTIONS FOR FURTHER IMPROVEMENTS 

5.1 MAJOR CHALLENGES IN THIS PROJECT 
Throughout the course of this project, our group encountered many obstacles that we were able 
to work through.  In addition, there were some particularly difficult challenges due to the fact 
that we pushed the capabilities of the AR Drone to close to its maximum potential.   

1. The development of the application on the drone and tablet were completed separately.  
When the time came for integration, we ran into several issues where the autopilot 
software on the drone did not appear to be working when the drone was flown with the 
Android tablet.  Plenty of time was spent debugging and finally it was determined that the 
source of the problem was a timing issue in the code that would start the autopilot from 
the tablet.  The tablet would in fact issue a telnet command to setup the iptables and 
immediately after it would start the avoidance autopilot.  However, it turns out that the 
application was starting before the iptables were set up correctly. 

2. After the addition of the 6 sensors to the drone it was very hard to be sure if any 
instability while flying the drone was because we were close to the weight limit or if we 
were proxying the commands incorrectly. 

3. The drone would have issues flying when the battery life fell below 40%; the extra draw 
from the sensors and microcontroller put an already highly utilized resource at an even 
higher utilization.  Under 40% battery life, the drone would become sluggish and fly 
awkwardly. 

4. The short flight time of the drone made live testing difficult since we would get 
approximately 5 to 10 minutes per battery charge that took ~1 hour.  On top of that flight 
time, the drone only behaved correctly for the first 5 minutes due to the sluggish flight 
under 40% battery life. 

5.2 LEARNING THROUGH THIS PROJECT 

5.2.1 Android Application 
None of our team had done much Android development before starting this project so there was 
a huge learning curve when starting with the tablet development.  Since we started with an open 
source Android application we had to learn most of the Android API before we could make a 
smart code change.  The following list covers the main topics of learning while creating and 
modifying the application: 
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5.2.1.1 Android ASyncTask 
An Android Asynctask allows for a quick and short side process such as a quick telnet 
command.  The Asynctask allows us to execute a command that would normally block the thread 
it is called from.  This is useful because if we were to execute such a command from the UI 
thread the application would appear unresponsive while the command completed.  For our 
application we used an Asynctask in order to quickly open up a telnet port and execute the 
command to setup the modified iptables on the AR drone as well as start the collision avoidance 
application. 

5.2.1.2 Android Threading and Message Handlers 
Android threads are very similar to java threads, which meant that getting a thread to run 
concurrently with the UI was quite simple after reading through the Android threading 
documentation.  The thread was created in order to receive updates from the drone’s autopilot 
about the current onboard sensor states.  All of the data received on the thread had to be sent 
back to the main user interface thread without breaking mutual exclusion or causing any other 
thread related issues.   In order to pass data between the two threads, Android has a Handler 
class, which can be inherited from.  One can then override its handleMessage function in order to 
pass customized data between the two threads. 

5.2.1.3 Dynamically Displaying Avoidance Bars 
Displaying the red avoidance bars that fade in and out while flying the quadcopter required a lot 
of prior code analysis that was a part of the initial open source application since the screen was 
setup in a certain way before our changes.  The current view and projection matrices had to be 
taken into account otherwise we would end up with either just red bars on the display or the red 
bars just wouldn’t show.  In order to make the avoidance bars appear like they were hiding and 
showing we then adjusted the alpha channel of the bars to the values reported by the drone 
autopilot application (0 for hide, >0 for show).  

5.2.2 Autopilot Application 
As Software Engineering students, our team initially had very little experience working with 
embedded systems. In order to ensure our autopilot software functioned correctly, we had to 
learn several important principles of embedded system design, including how to effectively share 
the quadcopter’s limited resources with the existing autopilot software, how to develop a 
toolchain to easily cross-compile and deploy our software, and how to interact with our 
specialized sensor platform. 

5.2.2.1 Sharing Limited System Resources 
Modern desktop software development is very forgiving regarding resource usage. Desktop 
operating system schedulers generally ensure that a misbehaving program can’t crash the system. 
On our quadcopter, interference with the flight control system could cause a literal system 
crash... into a wall. As a result, we had to learn to be conservative with our resource utilization, 
and to use profiling tools to ensure we were not exceeding what was available.  
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5.2.2.2 Developing a Toolchain for Cross-Compiling 
As the quadcopter’s embedded Linux system is based on an ARM chipset, it cannot execute 
software built with a standard Intel-targeting compiler. As a result, our team had to learn how to 
‘cross compile’; that is, configure an Intel-based compiler to create executables for an ARM 
architecture. This was further complicated by our automated tests, which needed to run on the 
Intel-based host computer, not on the ARM system. As a result, we learned how to create a 
portable toolchain, capable of building our autopilot software for either architecture. 

5.2.2.3 Interfacing with Embedded Sensor Platform 
Software Engineering usually only interacts with high-level operating system APIs, and 
interfaces with standard computer hardware - a screen, keyboard, mouse, hard disk, etc. Our 
autopilot system, however, had to interface with ultrasonic range-finding sensors, which had a 
single analog data output wire. As a result, our team had to learn the entire hardware 
communication stack - the physical wire that communicated the sensor data, through the USB 
sensor controller chip, through to the Linux operating system (via libusb, which we had to cross-
compile), through the sensor controller API (via libphidgets, also cross-compiled), and into our 
C++ code. 

5.3 SUGGESTIONS FOR FURTHER IMPROVEMENTS 
Our project could use a few improvements that would increase the safety and overall usability of 
the drone.  If we had more time with our project we would focus on the following improvements: 

1. Find sources of unneeded excess weight and remove them.  We would also replace 
components such as the wires used for the sensors with thinner gauge wire since that’s an 
easy way to reduce a few grams of weight. 

2. Add additional back corner sensors.  This would increase the safety of the drone while 
backing up.  We were unable to add these in the current state of the project since we 
already have hit the weight limit of the device. 

3. Add the ability to avoid collisions while flying the drone in absolute control mode.  
Absolute control mode is where only your device’s position is used as a point of 
reference for flying.  For example tiling your tablet forward would always cause the 
drone to fly forward away from you rather than flying forward in the direction that the 
camera is facing. 

4. Find a better tablet to deploy the application on.  The Nexus 7 accelerometer requires 
quite a drastic change in momentum before the application will pick up that the command 
has changed.  Nexus 7 tablet does not have vibration functionality. 

5. Audio and vibration avoidance feedback to complement visual feedback. 

6 CONCLUSIONS 
Our 4th year project was a success overall.  We met all of the initial requirements set out by our 
sponsor and they are excited to try a live demo of our project in the near future.  The quadcopter 
has a working collision avoidance system that can be easily used by any new or seasoned user.  
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The feedback given to the user is not only useful to the user when they need to know if the drone 
is in a dangerous situation (when it is not in direct line of sight) but it also does not appear 
abruptly and is therefore not obtrusive. The sensors chosen for attachment to the quadcopter have 
performed well enough to do the job we set out for them.  Also the overall integration of 
quadcopter, sensors, and Android application went extremely well with only a few minor hang-
ups.   
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8 GLOSSARY 
CDL Systems - The former company name of our sponsor.  The CDL does not stand for 
anything. 

GUI - Graphical user interface. 

OEM - Original Equipment Manufacturer 

UAV - Unmanned aerial vehicle. 

USB - Universal serial bus. 

Quadcopter - Also known as a quadrotor; a multicopter with 4 rotors. 

SDK - Software development kit. 

NDK - Native development kit. 

 


