
ENEL589: Fourth Year Engineering Design Project - Part II

Report #1

Department of Electrical and Computer Engineering
University of Calgary, Winter 2012

Project Title: Autonomous UAV Terrain Avoidance System

Team Information
Team number 30
Team name (optional) Team Lunch

Team leader James Thorne
2nd Member Adam Dickin
3rd Member Rami Abou Ghanem
4th Member Jennifer Patterson
5th Member

Customer Information

Customer (Full name of the

organization if applicable)
Lockheed Martin Canada CDL Systems

Website (if applicable) http://www.cdlsystems.com/
Contact person Greg Wilding
Contact address Harvest Hills Office Park

Building 5000, #5301, 333 - 96th Ave NE
Calgary, AB Canada T3K 0S3

Is there an IP issue with this project? Yes
Is this team in a legal agreement on an IP issue? Yes

 1

Table of Contents

Introduction .. 2

Product Design Specifications .. 3
Expected Performance .. 3
Specifications Related To Performance .. 3

Low Level Design ... 4
Overview of System Components .. 4
Modified Open-Source Android Piloting Application .. 5
Onboard Collision Avoidance Autopilot Software .. 5

Command Interception and Modification ... 6
Collision Avoidance Algorithm .. 7
Code Structure and Design .. 8

Hardware Design ... 10

Testing Plan ... 12
Android Application ... 12
Onboard Autopilot Software .. 12
Hardware Test Plan .. 15

Budget ... 16

Health, Safety and Environmental Issues ... 17
Potential Hazards .. 17
Standards and Regulations .. 17

Work Plan .. 18

References ... 19

Glossary .. 19

 2

Introduction

Over the past few years, there has been a substantial increase in drones being used for military

and police operations. Many of these drones do not have any system in place for collision

detection and avoidance besides notifying the operator so that they can change course. This

system works well when doing missions in a large open environment, but is insufficient for small,

highly maneuverable drones in enclosed or cluttered spaces.

Operator reaction times are too slow to successfully avoid collision, especially when considering

the latency introduced by a wireless control harness. Additionally, many of the commercial

systems available do not focus on being affordable, but rather on including every feature

possible. This results in a drone that is equipped for many tasks, but costs $50,000 or more.

This pricing makes drone adoption difficult for casual users, and leaves little room for repair or

replacement of drones involved in collisions.

There has been some improvement in this area over the past few years. In fact, some UAVs

are now available to the general consumer for around $400. These drones also do not have

any kind of collision avoidance, and limited control systems, and are therefore as easy to crash

as their high-end counterparts. Some improvement must be made in this area for both the

consumer market and the commercial market - ideally, both users would be able to use their

drones safely and effectively knowing that systems are in place to avoid crashes.

Our goal as Team Lunch is to solve these problems, and to prove that every autonomous drone

can be equipped with our solution. Our project will benefit our customer, Lockheed Martin

Canada CDL Systems Ltd., by demonstrating how such a system can be implemented cheaply

with off-the-shelf technology available to the general consumer. Our project will also benefit the

rest of the UAV market, because we will prove that such features are possible at a low cost. We

hope that with time, they will become standard on every UAV. Such an adoption will greatly

increase the safety of drones, not only by reducing the risk of a costly crash, but also by

reducing the risk of injury to persons and damage to property.

We have decided to focus on taking a commercially available, off the shelf consumer UAV, and

equipping it with an autonomous collision detection and avoidance system. This system will

allow us to prove that automated accident avoidance is possible during operation of a drone,

with minimal operator skill required. Our drone, once outfitted with these systems, will allow

unskilled operators to purchase and fly the UAV in close-quarter environments with minimal risk,

training, and possibility of damage to the UAV and surrounding property. Hopefully, the

outcome of our project will convince drone manufacturers to adopt the use of a collision

avoidance and detection system in production model aircraft. We also hope that with the

increased availability and lower cost of these autonomous drones, many more organizations will

decide to use drones in their everyday operations.

 3

Product Design Specifications

Expected Performance

The product should allow the UAV in use to avoid obstacles in flight. An obstacle is defined as

any solid object within the UAV’s trajectory. Upon detecting an obstacle, the system will notify

the user and either stop the UAV or move away from the obstacle, as required. As of this

iteration, the UAV will not be able to reliably avoid wires or meshes, such as chain link fences

and nets. The onboard equipment should be able to handle North American outdoor

temperatures.

Specifications Related To Performance

The Parrot AR.Drone itself is capable of a speed of 5 m/s, or 18 km/h. It has a weight of 0.9

pounds with the outer hull attached. Flying time on a single battery is about 12 minutes. Based

on this speed, we expect the UAV to be able to avoid obstacles which are stationary, or which

approach at a speed up to 5 m/s.

According to manufacturer specifications of the sensors, we are capable of sensing obstacles

as close as 152.4 mm, although items closer than this will also register as 152.4 mm by the

sensor. The sensor can detect obstacles up to 6.5 meters away. Distance measurement

resolution is 25.4 mm.

Feeling skeptical of the manufacturer’s claims for the ultrasonic sensors, we collected our own

distance detection data. In particular, we were interested in finding the angle of the field of view

of one of the sensors. Our test procedure is outlined in the Hardware Test Plan section. We

found that the ultrasound sensors have a field of view of 40 degrees. This is just short of the 45

degrees we hoped for. Additional ultrasonic sensors will be added on to the system to cover the

blind spots. We also found that the size of the obstacle had an effect on its maximum distance

for detection. Narrow objects, such as poles and large wires were detectable at 120 cm. Small

obstacles of approximately 1 square foot were detectable at 300 cm. Larger barriers of

approximately 2 square meters were detectable at 350 cm. Finally, walls were detectable at

600 cm. Since measured results from the sensors were not as effective as the manufacturer

claims, the measured values will be our expected specifications.

Measured system response latency was approximately 0.01 seconds. This latency can be

considered as negligible, since if an object approached fast enough to collide with the UAV

before it has time to respond, the UAV could not possibly have flown out of the way in time.

Finally, the sensor and equipment manufacturer specifications allow the product to be used in

temperatures ranging from -40 to 65 degrees Celsius. This is an acceptable outdoor range for

most places on Earth.

 4

Low Level Design

Overview of System Components

Our system consists of four major components: the end user, the Android application they use

to control the quadcopter, the embedded collision avoidance autopilot software, and the

Quadcopter hardware (including our enhanced sensor platform). The following diagram that

shows the interaction between these components:

Figure 1: System Interaction Diagram

The system we have proposed is built from off-the-shelf components, in order to allow us to

avoid spending time and energy recreating existing technology, such as the quadcopter and

ultrasonic sensors. We are building our collision avoidance software on top of a Parrot

AR.Drone 2.0 quadcopter, which already ships with control software that maintains all the

onboard systems, and allows for easy and stable flight. The quadcopter employs a built-in,

lightweight Linux-based operating system, which it uses to run the autopilot software as well as

a WiFi wireless networking interface. Off the shelf, the autopilot software is responsible for

responding to operator commands (such as “fly left, 20% speed”) by adjusting the rotors’

velocity. The onboard autopilot also maintains altitude using an onboard altimeter, and can

“hold position” using computer vision analysis of the image from a downward-facing camera.

To support our collision avoidance system, we have purchased several range sensors from a

Calgary-area vendor called Phidgets. These sensors are ultrasonic, and provide us with

distance readings between 154 mm and 6.5 m. These sensors work out of the box, and require

no user setup - we simply connect the “+5V”, “Ground” and “Data” lines to a Phidgets USB

sensor controller, and read the reported distances from a simple C api.

Lastly, we will be using an Android Nexus 7 tablet with an open source tablet application that we

will create to fit our needs. This tablet was selected as it is a stable, basic Android tablet, and is

representative of the wide variety of Android tablets that could potentially host our control

software in the future.

 5

Modified Open-Source Android Piloting Application

The android application for this project will be built off of an existing open source app called

“FreeFlight2”, created by Parrot. This application is a fully functional app that can be used to fly

an unmodified AR Drone. The application will be modified and only the essential features

needed for flight will be kept. Along with these modifications we plan to add several features

that are specific to our modified AR Drone. The existing application is quite complicated in the

way that it has been built but this has been for a good reason, since the developers at Parrot did

not want to write separate code for every deployment target. The android application

specifically uses the AR Drone’s flight API, which has been coded in C in order to be cross

platform compatible. In order to compile this code for android, the NDK (Native Development

Kit) provided by Google must be used. The GUI orientated part of the application however is

written in Java and is built off of the android SDK. As it would not be wise to mess with the

essential flight code of the drone which has likely been tested by parrot to be free of major bugs

we will implement the core of our new features in java.

We intend to add three features to the software:

1 Upon connecting to drone, the user will be able to remotely launch the quadcopter’s

onboard autonomous collision avoidance software.

2 Addition of sound to alert the operator when a collision has been avoided, or the

onboard autonomous collision avoidance software is proactively limiting the

quadcopter’s speed

3 A video overlay with invisible bars around the edge of the screen. These invisible bars

would change color to non-intrusively warn the operator when the autonomous collision

avoidance software is proactively limiting the quadcopter’s speed, or the quadcopter is in

danger of a collision.

Onboard Collision Avoidance Autopilot Software

The onboard collision avoidance software is responsible for preventing the operator from

crashing the vehicle. This will be accomplished by intercepting operator commands, modifying

them based on the ultrasonic sensor data, and then retransmitting them to the OEM autopilot

software that ships with the AR.Drone.

The autopilot software is written in C++ and cross-compiled to ARM from a standardized Debian

virtual machine image. This allows us to work on the code concurrently, using modern

development tools, and write scripts for tasks such as compiling and deploying the software

image.

 6

Command Interception and Modification

The Parrot AR.Drone is operated by sending a series of flight commands over WiFi, via UDP

packets. Our autopilot software intercepts these via a Linux iptables firewall rule, which

redirects these commands to a port monitored by our software. Once the commands are

received, we decode them, modify them, and then re-transmit them to the onboard autopilot

software. The iptables rule is installed only on the wireless network interface, not the local

loopback interface, preventing the commands from getting stuck in an infinite loop.

Figure 2: Command Path Diagram

The AR.Drone communication protocol is relatively straightforward. For flight commands, a UDP

packet is sent with the following format:

 AT*PCMD=%d,%d,%d,%d,%d,%d<CR>

The six values are as follows:

1 The packet sequence number

2 The current flight mode (hover, fly, fly with magnetic control, etc)

3 Drone left/right tilt

4 Drone front/back tilt

5 Drone vertical speed

6 Drone angular speed (spin)

Our collision avoidance software will intercept these commands, and modify flags 3 and 4

(left/right tilt and front/back tilt) based on the collision avoidance algorithm described in the next

section. Once new values are computed, the command packet is recreated, and forwarded to

the OEM autopilot. As far as the OEM autopilot is concerned, the operator original operator just

 7

happened to avoid the wall. This highly decoupled design allows us to ensure we don’t need to

modify the existing autopilot’s flight, stability, ground tracking, or safety algorithms.

Collision Avoidance Algorithm

The collision avoidance algorithm used is a simple dynamic limiting function, implemented

against smoothed sensor data. As the quadcopter approaches an obstacle, its maximum

forward speed is limited based on its distance to the object. Once the quadcopter gets within a

predetermined “danger” radius, the maximum forward speed is reduced below 0; i.e. the

maximum forward speed is actually backwards. This causes the quadcopter to back away from

the obstacle, preventing a collision.

Figure 3: Quadcopter Speed versus Obstacle Distance for One Obstacle

The maximum reverse velocity is limited in the same way, based on data from the rear sensor.

In the case where the maximum velocities overlap, such as if the quadcopter is constrained

between two walls, the average of the two maximums is used. This allows the vehicle to

automatically center itself in a crowded environment, without needing operator input.

 8

Figure 4: Quadcopter Speed versus Obstacle Distance for Multiple Obstacles

Once the front/back tilt is calculated, the same algorithm is used to calculate the left/right tilt.

This allows the vehicle to avoid collisions along both of its lateral degrees of freedom. The OEM

autopilot software already maintains altitude above the ground, and ceilings or other obstacles

above the vehicle have been determined to be outside the scope of this project.

Code Structure and Design

The code is structured using a dependency injection (DI) technique, allowing us to separate the

concerns of various modules, without coupling them more than is necessary. Any unrelated

modules communicate through C++ interfaces (classes consisting of only pure virtual methods),

allowing us to limit their coupling, and work on different modules independently. For example,

the sensor data is only accessible through the I_SensorReader interface, which consists of a

single “reading()” accessor function.

A complete diagram of the classes is as follows:

 9

Figure 5: Class Diagram

Dataflow through the software mirrors the class design. Commands are read in from the UDP

socket, modified based on the smoothed sensor data, and then written back out to another UDP

socket, as in the following diagram:

Figure 6: Data Flow Diagram

 10

Hardware Design

We will use the original AR Drone hull and attach ultrasonic sensors to its outer edges. The

sensors will communicate to the supplied Phidget Interface kit and communicate distance

information to the tablet. The tablet will interpret this information and test for potential collisions.

Figure 7: Sensor Connection Layout

Our initial hardware configuration had an ultrasonic sensor on each of the 4 edges of the frame.

After initial testing we found that this was insufficient, giving us a blind spot at corners of about

10 degrees, as shown in the following diagram.

Figure 8: Former Layout with Ultrasonic Blindspots

 11

To resolve this issue, we are adding additional ultrasonic sensors to cover the blind spot,

allowing us to satisfactorily detect threats from all directions. Note that since the sensors have a

conical zone, we will also detect obstacles from above and below. The new sensor

arrangement is shown in the following diagram.

Figure 9: Updated Layout With Full Ultrasonic Coverage

 12

Testing Plan

Android Application

 The android application will be tested with the following methods:

1 Drone will be started along with the android application, using feature addition 1 we will

load the collision avoidance system onto the drone. The drone will then be flown

towards an object using the modified android application.

2 The drone while flying will be flown at its minimum speed towards an object. As the

drone enters the specified collision warning zone the red bars laid out around the screen

will fade in red as the drone gets closer to the object.

3 The drone while flying will be flown at its minimum speed towards an object. As the

drone enters the collision zones tones will be listened for at increasing volume as we

head towards the object.

Onboard Autopilot Software

The autopilot software was built using an Automated Acceptance Test Driven Development

(AATDD) approach originally developed by our sponsor, Lockeed Martin Canada CDL Systems.

This approach is similar to TDD, but on a higher level. Before any functionality is implemented,

an automated acceptance test is written that tests this functionality, by only stubbing out

external parts of the software. For our testing strategy, the following software components are

replaced with mock objects for testing:

● CommandProxy, which wraps the UDP send/receive sockets used to communicate with

the control tablet and the OEM autopilot

● SensorReader, which wraps the libphidget library used to communicate with our

sensors

● TestBenchLogger, which wraps the console used to communicate debugging data to

the operator

A helper class called “FakeArDrone” constructs these three mock objects, as well as the entire

collision avoidance core system. This allows unit tests to easily create and destroy the C++

objects, without having to create them individually.

Once the FakeArDrone has been created, a human-readable acceptance test can be created.

For example, a very basic acceptance test that ensures the AR.Drone utilizes data from the

front-left sensor might read as follows:

TEST(UsesClosestForwardSensorReadingForCollisionAvoidance)

{

 // Arrange

 FakeArDrone::setup();

 13

 placeWallAtFrontLeftOfVehicle(DANGER_DISTANCE);

 // Act

 sendCommand(flyForward());

 // Assert

 CHECK_EQUAL(proxiedCommand(), stop());

}

This test consists of three parts:

● Arrange, in which we ask the singleton FakeArDrone class to setup a new instance, and

then place a wall in range of the front-left sensor.

● Act, in which we order the drone to fly forward

● Assert, in which we ensure that the proxied command, which is the one sent to the OEM

autopilot, is actually a “stop” command due to the obstacle.

These tests are written using a number of “helper” functions designed to make them easily

readable. This allows our customer to review our test coverage, and understand what we are

testing, without having to understand our entire system architecture. These functions are

generally short and concise; for example, placeWallAtFrontOfVehicle(double distance) could

read as follows:

void MessageHelpers::placeWallAtFrontLeftOfVehicle(float distance)

{

arDrone().sensors().readings_[ForwardLeftSensor] = distance;

}

When the collision avoidance core asks the mocked sensor reader for the ForwardLeftSensor’s

reading, it will return the value in the ‘readings_’ map, which in this case has been set to

‘distance’.

For the core autopilot system, we anticipate having the following automated acceptance tests:

TestSaysHelloToTestBench.cxx

TEST(SaysHelloToTestBench)

TestReportsSensorData.cxx

TEST(InitializesSensorsOnStartup)

TEST(ReportsSensorReadingsToTestBench)

TEST(ReportsSensorReadingsToAndroidTablet)

TestProxiesCommands.cxx

TEST(InitializesCommandProxyOnStartup)

 14

TEST(ProxiesAllUnknownCommandsWithoutModification)

TEST(ProxiesMultipleCommandsPerApplicationCycle)

TestInterpretsCommandsCorrectly.cxx

TEST(CurrentPlatformUsesExpectedFloatingPointMemoryRepresentation)

TEST(InterpretsArDroneSdksIntFormattedFloatingPointNumbersCorrectly)

TestAvoidsWalls.cxx

TEST(DoesntCrashIntoWallInFrontOfCopter)

TEST(DoesntCrashIntoAnyWalls)

TEST(CanStillFlyAwayFromWalls)

TEST(FlysAwayAutonomouslyWhenWithinDangerDistanceOfWall)

TEST(DangerRangeWorksForRearSensorsToo)

TEST(AutoCentersWhenFlyingBetweenNarrowWalls)

TEST(NotifiesTabletWhenCollisionsHaveBeenAvoided)

TestSupportsDiagonalSensors.cxx

TEST(ReportsForwardAngledSensorDataToTestBench)

TEST(UsesClosestForwardSensorReadingForCollisionAvoidance)

TEST(UsesClosestLeftSensorReadingForCollisionAvoidance)

TEST(UsesClosestRightSensorReadingForCollisionAvoidance)

TestExitsHoverModeWhenInDanger.cxx

TEST(LeavesHoverModeWhenWithinDangerRadiusOfAWall)

TEST(DoesntAffectHoverModeWhenEntirelySafe)

TEST(DoesntAffectHoverModeWhenWithinSafetyZone)

TEST(IgnoresUnintentionalCommandsWhileOverridingHoverMode)

TestSmoothsSensorData.cxx

TEST(InstantaniousSensorReadingsDontScrewThingsUp)

As we develop and enhance our autopilot software, we may add tests to this list as necessary.

We believe this set of tests covers our functional requirements, but it is easy to add more as

needed.

 15

Hardware Test Plan

We constructed a series of tests to determine the accuracy and sensitivity of the ultrasonic

sensors attached to the quadcopter. The quadcopter was connected to the laptop through Wifi

and was constantly outputting the distance data from each of the sensors equipped to the

quadcopter. From there we used various sized objects and a measuring tape to test the

distance that the sensors reported. The objects used include a small sized box, a standard

sized binder, a larger piece of cardboard, and a human body. The following types of tests were

performed.

1 This test was performed to determine if the distance data returned by the sensors was

relatively accurate with real life measurements. For this test we used objects of various

size and placed them in front of the sensor. The objects were then moved farther away

from the sensor and the reported distance was compared to the actual distance.

2 This test was to determine at what distance the sensors stopped returning accurate data.

This test involved moving objects of different sizes away from the sensor until the

reported distance remained constant. This data will give us the approximate distance

that the quadcopter will be able to detect a wall from.

3 This test was to determine the blind spots of the sensors. Our quadcopter has sensors

mounted on the front, back, and both sides. We wanted to determine where the blind

spots were and whether it would be justified to add more sensors. This test involved

bringing in objects of various sizes towards the sensor from the side, and then

determining at what distance the sensor began to detect the object.

 16

Budget

A) Budget outline

 Budget request

Materials and

supplies

$5000

Software $0

Small equipment $0

Travel $0

Books and journals $0

Subscription to

resources

$0

Consultant fee $0

Others; specify:

Others; specify:

Others; specify:

Total $5000

B) Budget justification:

We need this budget in order to purchase several quadcopters, various sensors with control

boards, and an Android Tablet for a control station. The budget also includes money in order

to fix the quadcopters if they crash or become damaged during testing.

C) Source of funding:

Lockheed Martin Canada CDL Systems

 17

Health, Safety and Environmental Issues

Health, safety and the environment is always a big issue in engineering projects. Our project is

primarily a software project but since we do have hardware that can fly through the air we have

quite a few issues that need to be recognized so that they may be prevented.

Potential Hazards

1. The Quadcopter could potentially hit a bystander or an obstacle if the control software

incorrectly fly’s the quadcopter the wrong direction when attempting to avoid terrain. This could

result in minor property damage or injury. We do not foresee any significant risk of death or

disfigurement in the event of a personnel or bystander collision.

2. The Quadcopter while flying could be attacked by large birds of prey in the area. The effect of

such a collision has the potential to harm said large bird of prey along with the quadcopter

falling from the sky and possibly hitting a bystander or damaging university property.

3. Repetitive stress or carpal tunnel syndrome could occur in one or many of our team members

due to excessive typing while trying to finish the project or due to excessive flying using the

tablet.

4. Security risks are present due to the 2 cameras on board the UAV. As such, the aircraft should

not be flown over private property without permission. All personnel and bystanders in the

vicinity should be be made aware if the video will be recorded and used for purposes other than

the navigation of the aircraft.

Standards and Regulations

Section 101.01 of the Canadian Aviation Regulations (CARs) states, "Unmanned Air Vehicle"

means a power driven aircraft, other than a model aircraft, that is operated without a flight

crewmember on board. Additionally, it must also weigh 35 kg or less. By this definition, we

consider our product to be a UAV.

In Canada, if the UAV will be used for profit, or owned by a company, a Special Flight

Operations Certificate (SFOC) is required. This license is free to obtain with a simple

application process. The application requires that the operator proves to Transport Canada that

they will not be putting the public in danger nor will they be disrupting air traffic.

Additionally, Transport Canada advises that a 100-foot horizontal buffer be kept between the

aircraft and a crowd of people. An emergency landing location must be available, and all

possible effort must be made to keep the craft from losing control while in the air.

 18

Work Plan

Tasks Deadline

The low level design is approved and

finalized

 January 25th, 2013

The specifications are approved and finalized January 25th, 2013

The test plan is approved and finalized January 25th, 2013

List of required parts and materials are

finalized

 January 25th, 2013

All parts and materials are available by January 25th, 2013

First version of the project is implemented January 28th, 2013

First iteration of testing is completed February 11th, 2013

Further improvements of design and/or test

plan

 February 30th, 2013

Final version of the project is implemented Mar 15th, 2013

Testing of the final version of the project is

completed

Mar 20th, 2013

Final presentation is ready Mar 27th, 2013

Report #2 is ready Mar 24th, 2013

The final version of the poster is printed off Apr 5th, 2013

Capstone design fair (Tentative) Apr 10th, 2013

 19

References

1 “Unmanned Aircraft Regulations”, Transport Canada.

http://www.tc.gc.ca/eng/civilaviation/standards/general-recavi-brochures-uav-2270.htm

2 “LV Maxbotix EZ1 Specifications Sheet”, Phidgets.

http://www.phidgets.com/documentation/Phidgets/1128_0_EZ1-Datasheet.pdf

3 “AR.Drone Specifications Sheet”, Parrot AR.Drone. http://ardrone.parrot.com/parrot-ar-

drone/en/technologies

Glossary

CDL Systems - The former company name of our sponsor. The CDL does not stand for

anything.

GUI - Graphical user interface.

OEM - Original Equipment Manufacturer

UAV - Unmanned aerial vehicle.

USB - Universal serial bus.

Quadcopter - Also known as a quadrotor; a multicopter with 4 rotors.

SDK - Software development kit.

NDK - Native development kit.

http://www.tc.gc.ca/eng/civilaviation/standards/general-recavi-brochures-uav-2270.htm
http://www.phidgets.com/documentation/Phidgets/1128_0_EZ1-Datasheet.pdf
http://ardrone.parrot.com/parrot-ar-drone/en/technologies
http://ardrone.parrot.com/parrot-ar-drone/en/technologies

