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Introduction 

Over the past few years, there has been a substantial increase in drones being used for military 

and police operations. Many of these drones do not have any system in place for collision 

detection and avoidance besides notifying the operator so that they can change course.  This 

system works well when doing missions in a large open environment, but is insufficient for small, 

highly maneuverable drones in enclosed or cluttered spaces. 

 

Operator reaction times are too slow to successfully avoid collision, especially when considering 

the latency introduced by a wireless control harness.  Additionally, many of the commercial 

systems available do not focus on being affordable, but rather on including every feature 

possible. This results in a drone that is equipped for many tasks, but costs $50,000 or more.  

This pricing makes drone adoption difficult for casual users, and leaves little room for repair or 

replacement of drones involved in collisions.   

 

There has been some improvement in this area over the past few years.  In fact, some UAVs 

are now available to the general consumer for around $400.  These drones also do not have 

any kind of collision avoidance, and limited control systems, and are therefore as easy to crash 

as their high-end counterparts.  Some improvement must be made in this area for both the 

consumer market and the commercial market - ideally, both users would be able to use their 

drones safely and effectively knowing that systems are in place to avoid crashes. 

 

Our goal as Team Lunch is to solve these problems, and to prove that every autonomous drone 

can be equipped with our solution.  Our project will benefit our customer, Lockheed Martin 

Canada CDL Systems Ltd., by demonstrating how such a system can be implemented cheaply 

with off-the-shelf technology available to the general consumer.  Our project will also benefit the 

rest of the UAV market, because we will prove that such features are possible at a low cost.  We 

hope that with time, they will become standard on every UAV.  Such an adoption will greatly 

increase the safety of drones, not only by reducing the risk of a costly crash, but also by 

reducing the risk of injury to persons and damage to property.   

 

We have decided to focus on taking a commercially available, off the shelf consumer UAV, and 

equipping it with an autonomous collision detection and avoidance system.  This system will 

allow us to prove that automated accident avoidance is possible during operation of a drone, 

with minimal operator skill required.  Our drone, once outfitted with these systems, will allow 

unskilled operators to purchase and fly the UAV in close-quarter environments with minimal risk, 

training, and possibility of damage to the UAV and surrounding property.  Hopefully, the 

outcome of our project will convince drone manufacturers to adopt the use of a collision 

avoidance and detection system in production model aircraft. We also hope that with the 

increased availability and lower cost of these autonomous drones, many more organizations will 

decide to use drones in their everyday operations. 
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Product Design Specifications 

Expected Performance 

The product should allow the UAV in use to avoid obstacles in flight.  An obstacle is defined as 

any solid object within the UAV’s trajectory.  Upon detecting an obstacle, the system will notify 

the user and either stop the UAV or move away from the obstacle, as required.  As of this 

iteration, the UAV will not be able to reliably avoid wires or meshes, such as chain link fences 

and nets.  The onboard equipment should be able to handle North American outdoor 

temperatures. 

Specifications Related To Performance 

The Parrot AR.Drone itself is capable of a speed of 5 m/s, or 18 km/h.  It has a weight of 0.9 

pounds with the outer hull attached.  Flying time on a single battery is about 12 minutes.  Based 

on this speed, we expect the UAV to be able to avoid obstacles which are stationary, or which 

approach at a speed up to 5 m/s.   

 

According to manufacturer specifications of the sensors, we are capable of sensing obstacles 

as close as 152.4 mm, although items closer than this will also register as 152.4 mm by the 

sensor.  The sensor can detect obstacles up to 6.5 meters away.  Distance measurement 

resolution is 25.4 mm.  

 

Feeling skeptical of the manufacturer’s claims for the ultrasonic sensors, we collected our own 

distance detection data.  In particular, we were interested in finding the angle of the field of view 

of one of the sensors.  Our test procedure is outlined in the Hardware Test Plan section.  We 

found that the ultrasound sensors have a field of view of 40 degrees.  This is just short of the 45 

degrees we hoped for.  Additional ultrasonic sensors will be added on to the system to cover the 

blind spots.  We also found that the size of the obstacle had an effect on its maximum distance 

for detection.  Narrow objects, such as poles and large wires were detectable at 120 cm.  Small 

obstacles of approximately 1 square foot were detectable at 300 cm.  Larger barriers of 

approximately 2 square meters were detectable at 350 cm.  Finally, walls were detectable at 

600 cm.  Since measured results from the sensors were not as effective as the manufacturer 

claims, the measured values will be our expected specifications. 

 

Measured system response latency was approximately 0.01 seconds.  This latency can be 

considered as negligible, since if an object approached fast enough to collide with the UAV 

before it has time to respond, the UAV could not possibly have flown out of the way in time. 

 

Finally, the sensor and equipment manufacturer specifications allow the product to be used in 

temperatures ranging from -40 to 65 degrees Celsius.  This is an acceptable outdoor range for 

most places on Earth. 



 4 

Low Level Design 

Overview of System Components 

Our system consists of four major components: the end user, the Android application they use 

to control the quadcopter, the embedded collision avoidance autopilot software, and the 

Quadcopter hardware (including our enhanced sensor platform).  The following diagram that 

shows the interaction between these components: 

 

 
Figure 1: System Interaction Diagram 

 

The system we have proposed is built from off-the-shelf components, in order to allow us to 

avoid spending time and energy recreating existing technology, such as the quadcopter and 

ultrasonic sensors.  We are building our collision avoidance software on top of a Parrot 

AR.Drone 2.0 quadcopter, which already ships with control software that maintains all the 

onboard systems, and allows for easy and stable flight.  The quadcopter employs a built-in, 

lightweight Linux-based operating system, which it uses to run the autopilot software as well as 

a WiFi wireless networking interface.  Off the shelf, the autopilot software is responsible for 

responding to operator commands (such as “fly left, 20% speed”) by adjusting the rotors’ 

velocity.  The onboard autopilot also maintains altitude using an onboard altimeter, and can 

“hold position” using computer vision analysis of the image from a downward-facing camera. 

 

To support our collision avoidance system, we have purchased several range sensors from a 

Calgary-area vendor called Phidgets.  These sensors are ultrasonic, and provide us with 

distance readings between 154 mm and 6.5 m. These sensors work out of the box, and require 

no user setup - we simply connect the “+5V”, “Ground” and “Data” lines to a Phidgets USB 

sensor controller, and read the reported distances from a simple C api. 

 

Lastly, we will be using an Android Nexus 7 tablet with an open source tablet application that we 

will create to fit our needs. This tablet was selected as it is a stable, basic Android tablet, and is 

representative of the wide variety of Android tablets that could potentially host our control 

software in the future. 
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Modified Open-Source Android Piloting Application 

The android application for this project will be built off of an existing open source app called 

“FreeFlight2”, created by Parrot.  This application is a fully functional app that can be used to fly 

an unmodified AR Drone.  The application will be modified and only the essential features 

needed for flight will be kept.  Along with these modifications we plan to add several features 

that are specific to our modified AR Drone.  The existing application is quite complicated in the 

way that it has been built but this has been for a good reason, since the developers at Parrot did 

not want to write separate code for every deployment target.  The android application 

specifically uses the AR Drone’s flight API, which has been coded in C in order to be cross 

platform compatible.  In order to compile this code for android, the NDK (Native Development 

Kit) provided by Google must be used.  The GUI orientated part of the application however is 

written in Java and is built off of the android SDK.  As it would not be wise to mess with the 

essential flight code of the drone which has likely been tested by parrot to be free of major bugs 

we will implement the core of our new features in java. 

 

We intend to add three features to the software: 

 

1 Upon connecting to drone, the user will be able to remotely launch the quadcopter’s 

onboard autonomous collision avoidance software. 

 

2 Addition of sound to alert the operator when a collision has been avoided, or the 

onboard autonomous collision avoidance software is proactively limiting the 

quadcopter’s speed 

 

3 A video overlay with invisible bars around the edge of the screen.  These invisible bars 

would change color to non-intrusively warn the operator when the autonomous collision 

avoidance software is proactively limiting the quadcopter’s speed, or the quadcopter is in 

danger of a collision. 

 

Onboard Collision Avoidance Autopilot Software 

The onboard collision avoidance software is responsible for preventing the operator from 

crashing the vehicle.  This will be accomplished by intercepting operator commands, modifying 

them based on the ultrasonic sensor data, and then retransmitting them to the OEM autopilot 

software that ships with the AR.Drone. 

 

The autopilot software is written in C++ and cross-compiled to ARM from a standardized Debian 

virtual machine image.  This allows us to work on the code concurrently, using modern 

development tools, and write scripts for tasks such as compiling and deploying the software 

image. 
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Command Interception and Modification 

The Parrot AR.Drone is operated by sending a series of flight commands over WiFi, via UDP 

packets.  Our autopilot software intercepts these via a Linux iptables firewall rule, which 

redirects these commands to a port monitored by our software.  Once the commands are 

received, we decode them, modify them, and then re-transmit them to the onboard autopilot 

software.  The iptables rule is installed only on the wireless network interface, not the local 

loopback interface, preventing the commands from getting stuck in an infinite loop. 

 
Figure 2: Command Path Diagram 

 

The AR.Drone communication protocol is relatively straightforward. For flight commands, a UDP 

packet is sent with the following format: 

 

 AT*PCMD=%d,%d,%d,%d,%d,%d<CR> 

 

The six values are as follows: 

 

1 The packet sequence number 

2 The current flight mode (hover, fly, fly with magnetic control, etc) 

3 Drone left/right tilt 

4 Drone front/back tilt 

5 Drone vertical speed 

6 Drone angular speed (spin) 

 

Our collision avoidance software will intercept these commands, and modify flags 3 and 4 

(left/right tilt and front/back tilt) based on the collision avoidance algorithm described in the next 

section.  Once new values are computed, the command packet is recreated, and forwarded to 

the OEM autopilot.  As far as the OEM autopilot is concerned, the operator original operator just 
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happened to avoid the wall.  This highly decoupled design allows us to ensure we don’t need to 

modify the existing autopilot’s flight, stability, ground tracking, or safety algorithms. 

Collision Avoidance Algorithm 

The collision avoidance algorithm used is a simple dynamic limiting function, implemented 

against smoothed sensor data.  As the quadcopter approaches an obstacle, its maximum 

forward speed is limited based on its distance to the object.  Once the quadcopter gets within a 

predetermined “danger” radius, the maximum forward speed is reduced below 0; i.e. the 

maximum forward speed is actually backwards.  This causes the quadcopter to back away from 

the obstacle, preventing a collision. 

 

 
Figure 3: Quadcopter Speed versus Obstacle Distance for One Obstacle 

 

The maximum reverse velocity is limited in the same way, based on data from the rear sensor. 

In the case where the maximum velocities overlap, such as if the quadcopter is constrained 

between two walls, the average of the two maximums is used.  This allows the vehicle to 

automatically center itself in a crowded environment, without needing operator input. 
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Figure 4: Quadcopter Speed versus Obstacle Distance for Multiple Obstacles 

 

Once the front/back tilt is calculated, the same algorithm is used to calculate the left/right tilt. 

This allows the vehicle to avoid collisions along both of its lateral degrees of freedom.  The OEM 

autopilot software already maintains altitude above the ground, and ceilings or other obstacles 

above the vehicle have been determined to be outside the scope of this project. 

Code Structure and Design 

The code is structured using a dependency injection (DI) technique, allowing us to separate the 

concerns of various modules, without coupling them more than is necessary.  Any unrelated 

modules communicate through C++ interfaces (classes consisting of only pure virtual methods), 

allowing us to limit their coupling, and work on different modules independently.  For example, 

the sensor data is only accessible through the I_SensorReader interface, which consists of a 

single “reading()” accessor function. 

 

A complete diagram of the classes is as follows: 
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Figure 5: Class Diagram 

 

Dataflow through the software mirrors the class design.  Commands are read in from the UDP 

socket, modified based on the smoothed sensor data, and then written back out to another UDP 

socket, as in the following diagram: 

 

 
Figure 6: Data Flow Diagram 
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Hardware Design 

 

We will use the original AR Drone hull and attach ultrasonic sensors to its outer edges.  The 

sensors will communicate to the supplied Phidget Interface kit and communicate distance 

information to the tablet.  The tablet will interpret this information and test for potential collisions. 

                                     
Figure 7: Sensor Connection Layout 

 

Our initial hardware configuration had an ultrasonic sensor on each of the 4 edges of the frame.  

After initial testing we found that this was insufficient, giving us a blind spot at corners of about 

10 degrees, as shown in the following diagram. 

         
Figure 8: Former Layout with Ultrasonic Blindspots 
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To resolve this issue, we are adding additional ultrasonic sensors to cover the blind spot, 

allowing us to satisfactorily detect threats from all directions.  Note that since the sensors have a 

conical zone, we will also detect obstacles from above and below.  The new sensor 

arrangement is shown in the following diagram. 

 
Figure 9: Updated Layout With Full Ultrasonic Coverage 
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Testing Plan 

Android Application 

 The android application will be tested with the following methods: 

1 Drone will be started along with the android application, using feature addition 1 we will 

load the collision avoidance system onto the drone.  The drone will then be flown 

towards an object using the modified android application. 

2 The drone while flying will be flown at its minimum speed towards an object.  As the 

drone enters the specified collision warning zone the red bars laid out around the screen 

will fade in red as the drone gets closer to the object. 

3 The drone while flying will be flown at its minimum speed towards an object.  As the 

drone enters the collision zones tones will be listened for at increasing volume as we 

head towards the object. 

Onboard Autopilot Software 

The autopilot software was built using an Automated Acceptance Test Driven Development 

(AATDD) approach originally developed by our sponsor, Lockeed Martin Canada CDL Systems.  

This approach is similar to TDD, but on a higher level.  Before any functionality is implemented, 

an automated acceptance test is written that tests this functionality, by only stubbing out 

external parts of the software.  For our testing strategy, the following software components are 

replaced with mock objects for testing: 

 

● CommandProxy, which wraps the UDP send/receive sockets used to communicate with 

the control tablet and the OEM autopilot 

● SensorReader, which wraps the libphidget library used to communicate with our 

sensors 

● TestBenchLogger, which wraps the console used to communicate debugging data to 

the operator 

 

A helper class called “FakeArDrone” constructs these three mock objects, as well as the entire 

collision avoidance core system.  This allows unit tests to easily create and destroy the C++ 

objects, without having to create them individually. 

 

Once the FakeArDrone has been created, a human-readable acceptance test can be created.  

For example, a very basic acceptance test that ensures the AR.Drone utilizes data from the 

front-left sensor might read as follows: 

 

TEST(UsesClosestForwardSensorReadingForCollisionAvoidance) 

{ 

   // Arrange 

   FakeArDrone::setup(); 
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   placeWallAtFrontLeftOfVehicle(DANGER_DISTANCE); 

 

   // Act 

   sendCommand(flyForward()); 

 

   // Assert 

   CHECK_EQUAL(proxiedCommand(), stop()); 

} 

 

This test consists of three parts: 

 

● Arrange, in which we ask the singleton FakeArDrone class to setup a new instance, and 

then place a wall in range of the front-left sensor. 

● Act, in which we order the drone to fly forward 

● Assert, in which we ensure that the proxied command, which is the one sent to the OEM 

autopilot, is actually a “stop” command due to the obstacle. 

 

These tests are written using a number of “helper” functions designed to make them easily 

readable.  This allows our customer to review our test coverage, and understand what we are 

testing, without having to understand our entire system architecture.   These functions are 

generally short and concise; for example, placeWallAtFrontOfVehicle(double distance) could 

read as follows: 

 

void MessageHelpers::placeWallAtFrontLeftOfVehicle(float distance) 

{ 

arDrone().sensors().readings_[ForwardLeftSensor] = distance; 

} 

 

When the collision avoidance core asks the mocked sensor reader for the ForwardLeftSensor’s 

reading, it will return the value in the ‘readings_’ map, which in this case has been set to 

‘distance’. 

 

For the core autopilot system, we anticipate having the following automated acceptance tests: 

 

TestSaysHelloToTestBench.cxx 

TEST(SaysHelloToTestBench) 

 

TestReportsSensorData.cxx 

TEST(InitializesSensorsOnStartup) 

TEST(ReportsSensorReadingsToTestBench) 

TEST(ReportsSensorReadingsToAndroidTablet) 

 

TestProxiesCommands.cxx 

TEST(InitializesCommandProxyOnStartup) 
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TEST(ProxiesAllUnknownCommandsWithoutModification) 

TEST(ProxiesMultipleCommandsPerApplicationCycle) 

 

TestInterpretsCommandsCorrectly.cxx 

TEST(CurrentPlatformUsesExpectedFloatingPointMemoryRepresentation) 

TEST(InterpretsArDroneSdksIntFormattedFloatingPointNumbersCorrectly) 

 

TestAvoidsWalls.cxx 

TEST(DoesntCrashIntoWallInFrontOfCopter) 

TEST(DoesntCrashIntoAnyWalls) 

TEST(CanStillFlyAwayFromWalls) 

TEST(FlysAwayAutonomouslyWhenWithinDangerDistanceOfWall) 

TEST(DangerRangeWorksForRearSensorsToo) 

TEST(AutoCentersWhenFlyingBetweenNarrowWalls) 

TEST(NotifiesTabletWhenCollisionsHaveBeenAvoided) 

 

TestSupportsDiagonalSensors.cxx 

TEST(ReportsForwardAngledSensorDataToTestBench) 

TEST(UsesClosestForwardSensorReadingForCollisionAvoidance) 

TEST(UsesClosestLeftSensorReadingForCollisionAvoidance) 

TEST(UsesClosestRightSensorReadingForCollisionAvoidance) 

 

TestExitsHoverModeWhenInDanger.cxx 

TEST(LeavesHoverModeWhenWithinDangerRadiusOfAWall) 

TEST(DoesntAffectHoverModeWhenEntirelySafe) 

TEST(DoesntAffectHoverModeWhenWithinSafetyZone) 

TEST(IgnoresUnintentionalCommandsWhileOverridingHoverMode) 

 

TestSmoothsSensorData.cxx 

TEST(InstantaniousSensorReadingsDontScrewThingsUp) 

 

As we develop and enhance our autopilot software, we may add tests to this list as necessary.  

We believe this set of tests covers our functional requirements, but it is easy to add more as 

needed. 
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Hardware Test Plan 

 

We constructed a series of tests to determine the accuracy and sensitivity of the ultrasonic 

sensors attached to the quadcopter. The quadcopter was connected to the laptop through Wifi 

and was constantly outputting the distance data from each of the sensors equipped to the 

quadcopter. From there we used various sized objects and a measuring tape to test the 

distance that the sensors reported. The objects used include a small sized box, a standard 

sized binder, a larger piece of cardboard, and a human body. The following types of tests were 

performed. 

 

1 This test was performed to determine if the distance data returned by the sensors was 

relatively accurate with real life measurements. For this test we used objects of various 

size and placed them in front of the sensor. The objects were then moved farther away 

from the sensor and the reported distance was compared to the actual distance. 

 

2 This test was to determine at what distance the sensors stopped returning accurate data. 

This test involved moving objects of different sizes away from the sensor until the 

reported distance remained constant. This data will give us the approximate distance 

that the quadcopter will be able to detect a wall from. 

 

3 This test was to determine the blind spots of the sensors. Our quadcopter has sensors 

mounted on the front, back, and both sides. We wanted to determine where the blind 

spots were and whether it would be justified to add more sensors. This test involved 

bringing in objects of various sizes towards the sensor from the side, and then 

determining at what distance the sensor began to detect the object. 
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Budget 

 

A) Budget outline 

  

  Budget request 

Materials and 

supplies 

$5000 

Software $0 

Small equipment $0 

Travel $0 

Books and journals $0 

Subscription to 

resources 

$0 

Consultant fee $0 

Others; specify:   

Others; specify:   

Others; specify:   

Total  $5000 
 

B) Budget justification: 

  

We need this budget in order to purchase several quadcopters, various sensors with control 

boards, and an Android Tablet for a control station.  The budget also includes money in order 

to fix the quadcopters if they crash or become damaged during testing. 

C) Source of funding: 

Lockheed Martin Canada CDL Systems 
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Health, Safety and Environmental Issues 

Health, safety and the environment is always a big issue in engineering projects.  Our project is 

primarily a software project but since we do have hardware that can fly through the air we have 

quite a few issues that need to be recognized so that they may be prevented. 

Potential Hazards 

1.     The Quadcopter could potentially hit a bystander or an obstacle if the control software 

incorrectly fly’s the quadcopter the wrong direction when attempting to avoid terrain.  This could 

result in minor property damage or injury.  We do not foresee any significant risk of death or 

disfigurement in the event of a personnel or bystander collision. 

2.     The Quadcopter while flying could be attacked by large birds of prey in the area.  The effect of 

such a collision has the potential to harm said large bird of prey along with the quadcopter 

falling from the sky and possibly hitting a bystander or damaging university property. 

3.     Repetitive stress or carpal tunnel syndrome could occur in one or many of our team members 

due to excessive typing while trying to finish the project or due to excessive flying using the 

tablet. 

4.     Security risks are present due to the 2 cameras on board the UAV.  As such, the aircraft should 

not be flown over private property without permission.  All personnel and bystanders in the 

vicinity should be be made aware if the video will be recorded and used for purposes other than 

the navigation of the aircraft.   

  

Standards and Regulations 

Section 101.01 of the Canadian Aviation Regulations (CARs) states, "Unmanned Air Vehicle" 

means a power driven aircraft, other than a model aircraft, that is operated without a flight 

crewmember on board.  Additionally, it must also weigh 35 kg or less.  By this definition, we 

consider our product to be a UAV. 

 

In Canada, if the UAV will be used for profit, or owned by a company, a Special Flight 

Operations Certificate (SFOC) is required.  This license is free to obtain with a simple 

application process.  The application requires that the operator proves to Transport Canada that 

they will not be putting the public in danger nor will they be disrupting air traffic. 

 

Additionally, Transport Canada advises that a 100-foot horizontal buffer be kept between the 

aircraft and a crowd of people.  An emergency landing location must be available, and all 

possible effort must be made to keep the craft from losing control while in the air. 
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Work Plan 

 

Tasks Deadline 

The low level design is approved and 

finalized 

 January 25th, 2013 

The specifications are approved and finalized  January 25th, 2013 

The test plan is approved and finalized  January 25th, 2013 

List of required parts and materials are 

finalized 

 January 25th, 2013 

All parts and materials are available by  January 25th, 2013 

First version of the project is implemented  January 28th, 2013 

First iteration of testing is completed  February 11th, 2013 

Further improvements of design and/or test 

plan 

 February 30th, 2013 

Final version of the project is implemented Mar 15th, 2013 

Testing of the final version of the project is 

completed 

Mar 20th, 2013 

Final presentation is ready Mar 27th, 2013 

Report #2 is ready Mar 24th, 2013 

The final version of the poster is printed off  Apr 5th, 2013 

Capstone design fair (Tentative) Apr 10th, 2013 
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Glossary 

CDL Systems - The former company name of our sponsor.  The CDL does not stand for 

anything. 

GUI - Graphical user interface. 

OEM - Original Equipment Manufacturer 

UAV - Unmanned aerial vehicle. 

USB - Universal serial bus. 

Quadcopter - Also known as a quadrotor; a multicopter with 4 rotors. 

SDK - Software development kit. 

NDK - Native development kit. 
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